
Disc brakes are coming to road bikes. You don’t need to look any further than SRAM’s new hydraulic offerings as proof; they wouldn’t make it if major frame manufacturers weren’t ready to spec it. But is this progress being driven by the need for improved performance or consumer demand? And are there true performance gains to be found?
After a massive wreck thanks to disc brake failure, I went looking for answers.
What I found, outlined here and in Part 2 (wheels) and Part 3 (frames/forks, articles coming soon) might surprise you. No one seems to argue that they’re coming and that, eventually, the performance will be there. But the tone coming from the people that make the parts is cautionary. People, including me until very recently, tend to think they can look to mountain bikes’ success with discs and translate that to the road. Unfortunately, that doesn’t seem to be the case. At least not in the ultralight, super sleek package everyone’s expecting.
The biggest challenge in making disc brakes strong enough and able to withstand several miles of continuous braking is balancing weight and aesthetics with performance. Let’s face it, if they’re heavy or ugly, you’re not going to buy it.
It’s no secret that several manufacturers are working on road disc brakes. SRAM’s announced it, Magura and TRP are rumored to have something in the works, and we suspect Shimano’s not going to sit idly by. And surprisingly, Hayes has been there and done that. Because no one’s systems (or at least their specs) are official yet, we asked these brands to answer a few hypothetical questions to see how they might address these issues…

MY DISC BRAKE FAILURE
After a solid three hour gravel road ride led by our friend Joseph from Boone Bike & Touring, we were about to wrap things up with a nice, fast descent down the smoothly paved Junaluska Road. Rolling across the top of the final crest, Evan led the way with me hot in pursuit on my Project Monstercross Moots.
Braking was handled by a first gen TRP Parabox clamping on Ashima’s new and ridiculously light Ai2 rotors. It’s important to note that the original Parabox is meant as a cyclocross brake system. The rear caliper and brake pads are smaller than the front, and the Ashima rotors are about as minimalist as you can get. In other words, they’re perfect for ‘cross where speeds are low and braking is rarely a life or death matter.

The chart above shows elevation drop and speed. As we began our descent, it took only a few seconds to get up to speed. Being my first time on this road, I kept light pressure on the levers, dragging my brakes to keep my speed around 30mph on a very curvy, steep road. Evan was dropping me on a Canti-equipped Raleigh ‘cross bike, and I was losing Joseph, who happened to be riding the Specialized Disc Crux we have on review and maintaining a more intelligent pace.
Coming around a corner, I pulled my brakes a little harder and the levers went to the bar. I held them there. I was still accelerating. In the span of one second, I realized that a) I had no brakes, b) if I kept descending it was only going to get worse, so c) I better crash now and minimize the damage.
Fortunately, I was headed into the side of the mountain rather than off the side. As quickly as I could, I tried to push the bike out from under me and let it ghost ride. I didn’t think about what, exactly, I would do without a bike under me, but I knew I didn’t want to get tangled up in it at 35mph. That’s all I remember until I stopped, lying in a ditch in the fetal position gasping for air.
The brake fade that led to my accident is something I’ve experienced on my mountain bike on several occasions with multiple brands of brakes. The difference is, on a trail it’s easier to run off the side, skid out or drag a foot to reduce speed. There are escape routes. They may not be pleasant, but they’re not a guardrail or oncoming vehicle. Plus, most trails (other than World Cup DH courses, perhaps) are designed to break up massively fast descents with small rollers or short climbs to keep the rider’s speed in check. Lastly, you’re rarely going 30+ mph on the trail.
On the open road, there are fewer options and arguably worse obstacles. Brake fade or failure there can more easily result in serious injury or death, both due to the speeds involved and because roadies generally wear less (if any) protective gear. The descents are longer and faster. It’s worth repeating: People ride longer, faster descents all over the world every day.
Thus far, I’ve been an fervent proponent of disc brakes on road bikes. There’s still a chance my next new road bike will have them. But this experience has shed new light on some serious obstacles that need to be overcome before I’ll fully commit.

WHAT THE BRAKE MANUFACTURERS ARE SAYING
First, a few assumptions we’re working from: Weights will need to be low, and aesthetics will dictate a small, sleek appearance. All of which minimizes surface area to improve cooling. While DH bikes can get away with 180mm to 200mm rotors and multi-piston calipers, road bikes aren’t likely to see anything over 160mm and single piston designs.
No one wants to tip their hat as to actual product offerings, so answers here are based on the hypothetical scenario that each is or will be offering a hydraulic road brake system. No one would confirm or deny anything.
Here’s who’s talking:
- Wayne Stetina, Shimano Road Products Specialist (U.S.)
- Stefan Paul, Magura Bicycle Products Manager (Germany)
- Lance Larrabee, Marketing Director for TRP (U.S.)
- Joel Richardson, Hayes Brakes Product Manager (U.S.)
BIKERUMOR: First things first, assuming no leaks or loose parts, what causes disc brake fade or failure?
Shimano: Constant dragging can be death to brakes. Heat causes failure. The smaller the rotor, the bigger the problem. Larger diameter wheels need larger diameter rotors.
Magura: Fade on disc brakes is caused either by glazing pads (the friction coefficient is decreasing, requiring much more hand force to achieve the same brake force) and/or by overheating/boiling of hydraulic fluid, no mater if DOT or mineral oil, leading to spongy feeling and even to the possibility of a full loss of brake power, because the brake lever is touching the bar without pressure point.
Glazing pads can be avoided by following the correct bed in process and having the right compound, matching to rotor material/ surface and heat demands, which is generally already chosen by the disc brake manufacturer. So keep always with original brake pads and rotors.


And then I talked to Hayes Brakes product manager Joel Richardson. Most people don’t associate Hayes with road bikes, but it turns out they may just have more experience with road bike disc brakes than anyone at the moment:
